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ABSTRACT
The Great Firewall of China (GFW) has long censored HTTPS (via
the Server Name Indication field, or SNI). Its mechanism for doing
so has been studied, with various evasion strategies discovered in
recent years. In this paper, we have evidence that suggests the GFW
has deployed a second HTTPS censorship middlebox that runs in
parallel to the first. We present a detailed analysis of this secondary
censorship middlebox—how it operates, the content it blocks, and
how it interacts with the primary middlebox—and present evidence
that this has been in operation since at least September 2019.We also
present several packet-based evasion strategies for the secondary
middlebox and demonstrate that the primary censorship middlebox
can be defeated independently from the secondary. Our code is
publicly available.

CCS CONCEPTS
• Social and professional topics→ Censorship.

KEYWORDS
Censorship; Geneva; Censorship-in-Depth
ACM Reference Format:
Kevin Bock, Gabriel Naval, Kyle Reese, Dave Levin. 2021. Even Censors
Have a Backup: Examining China’s Double HTTPS Censorship Middleboxes.
In ACM SIGCOMM 2021 Workshop on Free and Open Communications on the
Internet (FOCI’21), August 27, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3473604.3474559

1 INTRODUCTION
As much of the web transitions to HTTPS, nation-state network
censors have less information to base their decisions of whether or
not to block or tear down a connection. Whereas HTTP permitted
deep packet inspection (DPI) of keywords, HTTPS hides all request
and response data through encryption. However, the server name
indication (SNI) field in the TLS handshake reveals the website to
which the client wishes to connect. Censors such as China and Iran
have thus used the plaintext SNI field to guide their censorship
decisions and, in some cases, outright block all traffic that seeks to
hide the SNI through encryption (ESNI) [9].

As a result, significant effort has been paid to understanding and
evading SNI censorship, with particular attention paid to one of
the world’s largest censors, the so-called Great Firewall of China
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(GFW). In 2019, Chai et al. [10] empirically evaluated how SNI
censorship operated in China, and argued for the importance of
using ESNI. Unfortunately, China began blocking all ESNI traffic the
next year [9]. In 2020, Bock et al. investigated how to evade China’s
SNI censorship [7] and recently demonstrated how to weaponize it
to launch availability attacks [5]. Through all of this work, a mental
model emerged that indicated that China uses a single model of
middlebox to detect and react to SNI connections.

In this paper, we reinvestigate these findings and discover that
in fact China’s GFW uses two distinct censorship mechanisms in
parallel to censor HTTPS based on SNI.1 We first discovered this
second HTTPS censorship middlebox while trying to reproduce the
2019 censorship evasion results of Bock et al. [8] for HTTPS. We
observed that some censorship evasion strategies could evade the
GFW’s known HTTPS censorship, but small modifications could
cause strategies to fail unexpectedly: via a single RST packet deeper
in the TLS handshake. Now, we understand and report on the root
cause of this strange behavior: the GFW had a second censorship
middlebox all along.

We present a detailed analysis of China’s secondary HTTPS
censorship middlebox: how it works, how it can be triggered, and
how it can be defeated. We confirm this behavior is caused by
a separate middlebox by identifying unique TCP-layer bugs in
each middlebox, suggesting separate TCP stacks [7]. These findings
are important in refining our understanding of SNI censorship in
China—they resolve some of the confusing behavior previously
identified and chart a clearer path forward for how to measure and
evade SNI censorship more precisely. This is especially important
now, as China has effectively stopped the roll-out of ESNI within
its borders [9] and Russia is actively working to do the same [11].

Also, in a broader sense, our work demonstrates that censors are
now deploying multiple, complementary mechanisms that operate
over the same fields of the same packets. Although it is tempting
to think of them as a single “black box” of censorship, this paper
shows that it is both possible and important to tease them apart
into their constituent components.

The rest of this paper is organized as follows. In §2, we review
related work and background on nation-state censors and packet
manipulation based censorship evasion. §3 discusses our methodol-
ogy for our experiments. §4 shows how we can evade the newly
discovered censorship middlebox and how censorship evasion is
critical for our measurements of the new middlebox. §5 studies the
functionality of the new middlebox. Finally, §6 discusses ethical
considerations and §7 concludes.

1We only focus on SNI-based censorship of HTTPS, and thus use “HTTPS censorship”
and “SNI censorship” interchangeably.
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2 RELATEDWORK
Censorship-in-Depth Our work studies two complementary
censorship mechanisms that operate in tandem against the same
protocol—what Bock et al. call “censorship-in-depth” [6]. One exam-
ple of this is Iran’s use of a protocol filter [6] to limit communication
to a restricted set of protocols, in conjunction with standard DPI
censorship to block certain keywords. Similarly, previous studies
have shown that China uses a combination of IP blocking, DNS
hijacking, and SNI filtering to block connections to HTTPS web-
sites [3, 10].

Whereas these prior approaches investigate cooperating mecha-
nisms that aim to censor different but complementary protocols, we
have identified two distinct mechanisms that both aim to censor the
same exact protocol (SNI-based HTTPS). As we will demonstrate,
this makes it particularly challenging to disentangle the two, as
they both operate on the same packets. Our findings demonstrate
what we believe to be a novel way in which nation-states employ
censorship-in-depth.

Measuring Censorship There have been many studies into how
censors operate, largely broken down into two broad categories:
First is the large set of papers that study and measure the content or
destinations targeted by censorship [10, 18–22]. We do not expand
on this body of knowledge, other than to test whether both of
China’s mechanisms of SNI-based censorship differ in the content
they block (they do not appear to).

Second, and most related, is the body of work that studies how
censors operate [2, 4, 13, 14, 17, 25, 27]. Our work refines prior
understanding of China’s SNI-based censorship, but in a broader
sense has a much more significant takeaway message: censorship
mechanisms may not be monolithic but rather may consist of mul-
tiple separate middleboxes working in tandem towards the same
goal. We believe our techniques can be more broadly applied to
studying other forms of such “backup” censorship.

Packet Manipulation-based Censorship Evasion In addition
tomeasuring China’s two forms of SNI-based censorship, we present
ways to circumvent them both. To do so, we apply recent techniques
that manipulate the packet stream from one side of the connection
(either the client or the server) to confuse or prevent a censor from
properly disrupting a connection. The canonical example of this
attack is a TTL-limited RST: a client wishing to evade censorship,
before sending a forbidden request, injects a RST packet with a TTL
set high enough to reach the censor but not high enough to reach
the server. When the censor processes this RST packet, it believes
the connection has been torn down, throws away its Transmission
Control Block (TCB), and stops tracking the connection. Since the
RST packet will get dropped before it reaches the server, the server
and the real TCP connection will not be affected and, for the rest of
this flow, the client and server can communicate free of censorship.

Recent advances in censorship evasion have led to approaches
that automate the discovery of packet manipulation censorship
evasion strategies [7, 8, 24]. In this paper, we use one of these open-
source tools (Geneva [8]) to discover four distinct evasion strategies.
We show that China’s primary HTTPS+SNI censorship middlebox
can be defeated without defeating the secondary.

3 METHODOLOGY
Measuring two censorship mechanisms that both operate on the
same packets is challenging. To understand how they both operate
independently and in conjunction with one another, our method-
ology involves evading one of the boxes to selectively measure
the other. In this section, we describe our high-level approach to
evasion and measurement.

Admittedly, our approach was somewhat circular: our initial
measurements provided insight that allowed us to begin evading,
which let us perform more measurements, and so on. Thus, to best
understand our methodology, it is useful to also understand at a
high level how the two censorship mechanisms work, which we
also provide here.
Vantage Points We obtained two censored vantage points inside
China (Beijing) and external uncensored vantage points in Japan
(Tokyo) and the United States (Iowa, Virginia). Our Chinese vantage
points are located within different ISPs, but Xu et al. found that the
GFW’s actual deployment of certain censoring middleboxes may
vary based on the type of ISP [26], so our conclusions are limited by
the ISPs we can measure. We use the vantage points in China as our
“client,” and our vantage points outside as our “server.” Throughout
our experiments, we only connect to machines we control.
Detecting Evasion of One Mechanism It is straightforward to
determine if we have evaded both of the censorship mechanisms—
we need only see if we received the censored content. But how can
we determine if we have evaded censorship of only one box?

The key insight is that the two mechanisms block censorship in
different ways. The GFW’s primary (already known) censorship
middlebox operates by injecting an idiosyncratic pattern of three
RST+ACK packets to both the client and the server once it observes
a TLS Client Hello with a forbidden Server Name Indication (SNI)
field [5, 7, 10]. We will refer to this primary middlebox as MB-RA
(MiddleBox RST+ACK). The GFW’s secondary SNI censorship mid-
dlebox, by contrast, tears down connections by injecting one single
RST packet: we will refer to this middlebox as MB-R (MiddleBox
RST).

Unless otherwise specified, we configured our vantage points to
drop all outbound RST and RST+ACK packets. Thus, we expect any
RST or RST+ACK packets received by our client to come from the
MB-R or MB-RA middleboxes, respectively.
Triggering Censorship We trigger censorship by injecting for-
bidden domain names in the SNI field (though all communication is
strictly between the client and server machines we control). How-
ever, we have found that it is not always sufficient to stop sending
packets at that time.

Unlike MB-RA, MB-R does not tear down a connection immedi-
ately after observing a forbidden SNI. Instead, it waits to inject its
RST packet until the client sends the next packet in the TLS hand-
shake: the ClientKeyExchange or the ClientChangeCipher-

Spec. Note that the forbidden SNI field is not present in either of
these messages. MB-R is a stateful middlebox that is triggered by
the forbidden SNI field in the Client Hello message but does not act
until after the client continues the handshake. We believe this is the
reason researchers have not reported on this middlebox until now.
Figure 1 illustrates the TCP 3-way handshake and TLS handshake
and where each of the two middleboxes acts.
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Figure 1: A waterfall diagram of the TCP 3-way handshake
and the TLS handshake, denoting where the already known
MB-RA and newly discovered MB-R middleboxes act during
the connection. Note that MB-R does not act until deeper in
the handshake than MB-RA (and only if MB-RA does not act),
seemingly acting as a backupmiddlebox for China’s HTTPS
(SNI) censorship.

Isolating the Second Middlebox Studying MB-R is also made
more difficult because MB-RA and MB-R seem to interact with one
another. Specifically, when MB-RA takes action to tear down a con-
nection, MB-R does not act even if MB-RA fails to tear down the
connection or the connection continues. We performed an experi-
ment in which we instrumented a vantage point within China and
a server outside of China to drop all inbound RST+ACK packets and
tried to complete a TLS handshake with a forbidden SNI between
them. If MB-R and MB-RA operated independently, after both sides
of the connection drop the RST+ACKs injected by MB-RA, we would
expect MB-R to inject its RST packet once the client continues the
TLS handshake.

Instead, we find that any time MB-RA injects packets, MB-R stops
paying attention to the connection entirely. We believe the injected
RST+ACK packets from MB-RA are causing MB-R to tear down its
TCB (Transmission Control Block) for the connection. This exper-
iment suggests that MB-R is a backup censorship middlebox for
MB-RA: it only injects RST packets if MB-RA fails to take action.

This interaction between MB-RA and MB-R also offers MB-R a
way to avoid state exhaustion: once a connection is torn down by
MB-RA, MB-R does not need to continue tracking it. We believe this
interaction also explains why other components of the GFW will
stop paying attention to a connection if the client injects a RST+ACK
packet (a TCB Teardown attack). Researchers have wondered why
the GFW continues to be vulnerable to TCB Teardown attacks to
this day, despite having been reported for years [7, 8, 15, 16, 23, 24].
If the GFW is architected to internally use the RST+ACK packets
injected by one middlebox to prevent state exhaustion in other
middleboxes, this would explain why TCB Teardown attacks have
not been patched.

Unfortunately, this interaction between MB-R and MB-RA makes
studying it in isolation difficult. The only signal we have to measure
MB-R is its injection of RST packets, but it does not inject these

packets until deeper in the TLS handshake than MB-RA. We could
repeatedly make forbidden connections until MB-RA fails to inject
packets, but to make reliable measurements, instead we leverage
packet manipulation evasion strategies to evade MB-RA without
affecting MB-R.
Evading Censorship We leveraged an open-source tool called
Geneva (Genetic Evasion), a genetic algorithm designed to discover
packet manipulation-based censorship evasion strategies. Geneva
has been used successfully against the GFW in the past [7–9], as
well as censorship infrastructure in other countries [6, 7].

The output of Geneva is sequences of packet manipulations that
confuse or disable a censoring middlebox. Central to Geneva’s abil-
ity to find evasion strategies is its fitness function, which evaluates
how successful a strategy is against a given censor. For this work,
we made a small modification to Geneva’s reward function to op-
tionally ignore inbound RST packets on both sides of the connection.
This enables us to optionally train Geneva to find strategies that
defeat only the RST+ACK middlebox (since MB-RA injects RST+ACK
packets, not RST packets).

After using Geneva, we performed manual follow-up experi-
ments to understand how each strategy works. To compute reliabil-
ity for each strategy, we used each strategy 100 times while trying
to complete a full TLS handshake with a censored keyword in the
SNI field (wikipedia.org) between vantage points within China
and outside of China.

Because of the interaction between the two middleboxes, we are
only able to defeat either MB-RA alone or both of them together.
Recall that the only signal we have to measure MB-R’s reaction
is it injecting RST packets, but it does not do this injection until
later in the TLS handshake after MB-RA may act. It is possible that
there exist packet sequences that confuse or disable MB-R without
disabling MB-RA, but we are unable to confirm this.

4 EVASION
In this section, we will report on client-side strategies we discovered
with Geneva that defeat only MB-RA and both MB-RA and MB-R. Fol-
lowing precedent from prior work, we will report on the strategies
we find both in text and include theGeneva syntax that implements
the strategy.

4.1 MB-RA Evasion Strategies
The most reliable working client-side strategy that we found first
sends two SYN packets, then splits the TLS Client Hello in half to
make two TCP segments, and sends them out of order2. In our
testing, this strategy worked with 99% reliability.

Strategy 1: MB-RA: Double-SYN Segmentation
[TCP:flags:S]-duplicate-|

[TCP:flags:PA]-fragment{tcp:-1:False}-|

The fact that this strategy works is strange and surprising. The
GFW is known to be capable of reassembling TCP segments, even
if sent out of order [7]. Indeed, if the second SYN packet is removed,
2Note that Geneva’s syntax represents TCP segmentation with the fragment action
with the tcp parameter.
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the strategy no longer works, as MB-RA reassembles the TLS Client
Hello and censors the connection. This strategy suggests that MB-RA
is keeping track of both the TCP handshake and the TLS handshake,
but seeing the unexpected SYN packet interferes with its ability to
reassemble messages. We do not know why this is. Note that this
strategy does not evade MB-R; this only disables MB-RA.

The second type of client-side strategywe discovered that defeats
MB-RA also involves abusing MB-RA’s ability to reassemble TCP
segments. This strategy involves performing 6 TCP segmentations
to create 7 total TCP segments out of the original TLS Client Hello,
with each segmentation reversing the order of the segments. In the
end, this strategy reverses the order of the segments exactly. This
strategy worked with 100% reliability.

Strategy 2: MB-RA: Segmentation Overload
[TCP:flags:PA]-fragment{tcp:-1:False}(

fragment{tcp:-1:False}(

,fragment{tcp:-1:False}),

fragment{tcp:-1:False}(

fragment{tcp:-1:False},

fragment{tcp:-1:False})

)-| \/

This is not the only variant of this strategy that works to defeat
MB-RA, but it is not sufficient to simply split the TLS Client Hello
into any seven segments. Geneva found dozens of strategies with
similar number and ordering of segmentation that function, and
hundreds more that do not.

Without a second SYN packet, at least 7 segments are required for
this strategy to work, and further segmentation does not negatively
affect the reliability of the strategy. Exactly reversing the order
of the segments too is not a requirement; other variants of this
strategy exist that defeat MB-RA without defeating MB-R without
this property. Previous researchers found that different parts of the
GFW have issues reassembling segments less than 8 bytes long [7,
24], but each segment in this example is at least 24 bytes long.

We originally hypothesized that this series of segmentations
must simply split up the SNI field across multiple packets, but when
this strategy is used, the SNI field is intact and unchanged in a single
TCP segment. Leaving the SNI field intact is also not a requirement;
other versions of this strategy that split the SNI field across multiple
segments and work equally well. Frankly, we do not understand
why this strategy defeats MB-RA.

4.2 Evading MB-RA and MB-R

Next, we will discuss strategies that can defeat both MB-RA and MB-
R. Geneva discovered variants of the aforementioned Segmentation
Overload strategy that defeat both MB-RA and MB-R simultaneously,
with 99% reliability. Like before, this strategy performs multiple
rounds of TCP segmentations on the TLS Client Hello packet to
produce 7 individual packets, most of which are out of order. Again,
it is not clear why this strategy works.

The most salient difference between strategies that defeat MB-R
compared to the previously discussed MB-RA-beating strategies is
that these strategies contain at least one middle pair of segments

Strategy 3: MB-R & MB-RA: In-Order Segmentation Over-
load
[TCP:flags:PA]-fragment{tcp:-1:False}(

fragment{tcp:-1:False}(

,fragment{tcp:-1:False})

,fragment{tcp:-1:False}(

fragment{tcp:-1:True},

fragment{tcp:-1:False})

)-| \/

that remain in-order. The location of the SNI field does not impact
the reliability of this strategy; it can be included in any segment or
be split across multiple segments.

Geneva also found that it could combine pieces of the In-Order
Segmentation strategy to reduce strategy complexity. This next
strategy works by duplicating the SYN packet and performing three
TCP segmentations of the TLS Client Hello.

Strategy 4: MB-R & MB-RA: Double SYN, Triple Segmenta-
tion
[TCP:flags:S]-duplicate-|

[TCP:flags:PA]-fragment{tcp:-1:False}(

,fragment{tcp:-1:False}(

fragment{tcp:-1:True},)

)-| \/

In our follow-up experimentation, we find that in order for this
strategy to defeat both MB-RA and MB-R, the segments must be
sent in a specific order: the fourth segment must be sent first, then
the second segment, then the third, and finally the first segment.
Any deviation from this order causes MB-R to detect the sequence,
though any order in which the first segment is not sent first is
sufficient to evade MB-RA.

We verified that only the order in which the segments are sent
matters, not the content or size of the segments. Wemanually tested
different strategies that would make a single segment 188 bytes long
(making each of the other segments just a single byte long); as long
as the correct segment order is maintained, the strategy evades
MB-RA and MB-R. We do not understand why these constraints
apply.

We also rediscovered several strategies that researchers had
found in the past for other components of the GFW [8, 9, 23]: TCB
Teardowns (injecting a TTL-limited or checksum corrupted RST)
and TCB Desynchronization (injecting a TTL-limited or corrupt
checksum with data).

5 HOW DOES MB-RWORK?
Now that we have a robust way to trigger MB-R in isolation, we
can explore how MB-R works. In this section, we report on MB-R’s
functionality.
Which packets from the client will MB-R act upon? We per-
formed a series of experiments in which we instrumented a client
to send a TLS Client Hello with a forbidden SNI field (such as
wikipedia.org), followed by different client handshake messages
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or packet payloads, including empty packets, garbage messages,
and HTTP payloads. We did not observe a response from MB-R

for any non-TLS messages nor for ClientHandshakeFinished
messages.We find that MB-Rwill only take action if it sees a Clien-
tKeyExchange or ClientChangeCipherSpec.

Is MB-R bidirectional? Yes, both MB-R and MB-RA track connec-
tions that originate from both inside and outside of China. First,
we confirmed that MB-RA is still bidirectional: we made requests
from vantage points we controlled outside of China to our vantage
points inside China, and in the opposite direction; in both cases, we
can trigger MB-RA. Next, we tested if MB-R also monitors traffic in-
bound to China by sending multiple different packet sequences that
evade MB-RA (in different ways) but trigger MB-R and confirmed
that MB-R is also bidirectional.

What is the reliability of MB-R and MB-RA? Previous researchers
have found that the GFW is not 100% reliable in its censorship (usu-
ally around 97%) [7, 8, 23]. To test the reliability of both the primary
and secondary middleboxes, we sent 2,000 packet sequences with
small sleeps in between for both MB-R and MB-RA from a vantage
point outside of China to servers we controlled inside China, each
from a fixed source port to a unique destination port. By observing
which ports are interfered with, we can estimate the reliability of
each middlebox.

We find that MB-R interfered with 87.0% of the connections, and
MB-RA interfered with 88.2% of connections. Interestingly, these
numbers composed together explain the approximately 97% total
reliability found by previous researchers [7]: the likelihood of both
middleboxes failing is approximately 1.8%, for a total reliability of
98%.

What ports does MB-R monitor? Researchers in the past have
reported that the GFW’s SNI censorship middlebox (MB-RA) moni-
tors all ports 1-65,535 [7]. To test which ports MB-R monitors, we
conducted an experiment in which we sent the sequences of pack-
ets that trigger MB-R from our vantage points outside of China to
servers we control within China on every destination port. For this
experiment, we configured the server within China to drop all out-
bound RST and RST+ACK packets, so we expect any RST or RST+ACK
packet received by our vantage points outside of China to origi-
nate from the middlebox. We also verified the sequence numbers
of inbound RST packets to prevent any spurious RST packets from
interfering with the experiment. To account for MB-R not being
100% reliable, for any port that did not elicit censorship, we repeat
the packet sequences to confirm whether or not the failure was a
fluke. We find that MB-R, like the already known MB-RA, monitors
all ports.

Does MB-R monitor ESNI or omit-SNI? In 2020, researchers
discovered that China had deployed a new censorship middlebox to
censor uses of HTTPS with Encrypted SNI (ESNI) [9]. They found
that the new ESNI censorship middlebox does not censor omit-SNI
(Client Hello messages with the SNI field omitted), although other
censorship middleboxes have been observed censoring omit-SNI [1].
They determined that this censorship middlebox was different from
the already known MB-RA HTTPS (SNI) censorship middlebox and
confirmed that MB-RA does not monitor or censor uses of ESNI or
omit-SNI. Does MB-R censor ESNI or omit-SNI?

To test this, we modified the sequence of packets we discovered
that trigger MB-R. In the first experiment, we replaced the forbidden
SNI TLS Client Hello with a TLS 1.3 Client Hello with an ESNI
extension. In the second experiment, we replaced the forbidden SNI
TLS Client Hello with a TLS Client Hellowith no SNI extension at all.
We find that MB-R does not censor ESNI or omit-SNI connections.

Does MB-Rmiddlebox have residual censorship? Residual cen-
sorship is a feature of some censorship middleboxes in which after
a censorship event occurs between a pair of hosts, the censor con-
tinues to interfere with benign connections between them for a
short amount of time [5]. Some prior work has reported that MB-RA
has residual censorship [10], but other researchers have reported
that this residual censorship may be specific to certain vantage
points [5]. From our vantage points in China, we do not observe
residual censorship for MB-RA: after a censorship event, future be-
nign connections between the same pair of hosts are not affected.

To test if MB-R has residual censorship, we issued packet se-
quences that trigger MB-R, and then sent follow-up benign con-
nections. We find the same result as MB-RA: we do not observe
residual censorship. Unfortunately, like all censorship measure-
ment research, we are limited in what vantage points we can access,
and absence of evidence for residual censorship at both of our van-
tage points is not evidence of its absence throughout the network.
It is possible that MB-R’s residual censorship varies by geographic
location.

Does MB-R and MB-RA have the same blocklist? To test if MB-R
and MB-RA have different blocklists, we downloaded CitizenLab’s
China (567 domains) and Global (1,435 domains) test lists [12] to
see if there were any domains censored by one middlebox that was
not censored by the other. For each domain on the test list, we
sent trigger packet sequences for both MB-RA and MB-R from the
vantage points we controlled in China to a vantage point outside
of China with the test domain in the SNI field of the TLS Client
Hello. We used a unique source port for each of these connections
and our vantage points were configured to drop all outbound RST
and RST+ACK packets, so we expect any RST or RST+ACK packets
we receive to originate from the GFW. Note that since our vantage
points do not experience residual censorship for MB-RA or MB-R,
residual censorship is not a concern for this experiment. Since
the reliability of MB-R and MB-RA are not 100%, we repeated this
experiment 5 times. As long as a test domain triggers a middlebox
at least once, we know it is censored.

We find that both middleboxes had the same response to all of
the domains we tested; if MB-RA censored it, so did MB-R and vice
versa. This experiment supports our theory that MB-R acts as a
backup middlebox to MB-RA.

Where is MB-R deployed relative to MB-RA? To test where MB-R
and MB-RA are located on the network, we performed an experiment
in which we TTL limited the packet trigger sequences for both MB-R
and MB-RA. By repeatedly sending a trigger sequence of packets
with increasing TTL values, we can see at what hop each middlebox
performs traffic injection. We repeated this experiment from both
of our vantage points inside of China destined to multiple vantage
points outside the country and then again in the reverse direction.
We find that MB-RA and MB-R were the same number of hops away
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from each test vantage point; this suggests that they are collocated
on the network level. This finding aligns with a previous exploration
of China’s censorship middlebox, which also found that China
collocated the censorship infrastructure for other protocols [7].

6 ETHICAL CONSIDERATIONS
We designed our experiments to minimize impact on other hosts
and to minimize risk to other users. All of our experiments with
MB-R and training withGenevawas done strictly between hosts we
controlled and hosts not located in residential networks. Geneva
does not spoof IP addresses and generates a fairly small amount
of traffic while training [8]. We also followed the original exper-
iment design of Geneva and evaluated strategies serially to limit
the volume of data we sent at once.

7 CONCLUSION
In this paper, we show that China’s SNI-based censorship has con-
tinued to evolve. We discover and report on the existence of a sec-
ondary SNI censorship middlebox and show that the middleboxes
can be studied in isolation.

It is somewhat surprising that China continues to invest in its
SNI-based censorship, as TLS is evolving to incorporate encrypted
versions with Encrypted SNI (ESNI) and Encrypted Client Hello
(ECH). Indeed, China continues to do so, and they (as with other
countries [11]) are working to block ESNI outright [9]. This indi-
cates that there is not yet enough critical mass behind ESNI/ECH
to make the collateral damage of blocking them prohibitively large
for China. Until it is, SNI-based censorship will remain a threat.

Our work also uncovers a more fundamental finding: censors
are employing censorship-in-depth not just by blocking multiple
intersecting protocols but by deploying middleboxes that target
the same protocol in slightly different ways. The techniques we
presented in this paper provide a potential path forward for un-
derstanding and evading these robust forms of censorship. To as-
sist in these efforts, we have made our code publicly available at
https://geneva.cs.umd.edu
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APPENDIX
In this appendix, we provide more information about Geneva itself
and how Geneva works. For more information on Geneva, see
Bock et al.’s original paper [8], or the documentation at geneva.
readthedocs.io.
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Geneva (Genetic Evasion) is a genetic algorithm we developed
that evolves censorship evasion strategies against a censor. Unlike
most anti-censorship systems, it does not require deployment at
both ends of the connection: it runs exclusively at one side (client or
server) and defeats censorship by manipulating the packet stream
to confuse the censor without impacting the underlying connection.
A “censorship evasion strategy” describes how that traffic should be
modified. Since Geneva will be evolving these strategies, they are

expressed in a domain-specific language that comprises the DNA
of each strategy. (For a full rundown of the strategy DNA syntax,
see the documentation).

Geneva is comprised of two main components. First, the ge-
netic algorithm, which can evolve new ways to defeat a censorship
system given an application that experiences censorship and a fit-
ness function. Second, the strategy engine, which applies a given
strategy on the fly to modify active network traffic.


