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Abstract
Reflective amplification attacks are a powerful tool in the

arsenal of a DDoS attacker, but to date have almost exclu-
sively targeted UDP-based protocols. In this paper, we demon-
strate that non-trivial TCP-based amplification is possible and
can be orders of magnitude more effective than well-known
UDP-based amplification. By taking advantage of TCP-non-
compliance in network middleboxes, we show that attackers
can induce middleboxes to respond and amplify network traf-
fic. With the novel application of a recent genetic algorithm,
we discover and maximize the efficacy of new TCP-based
reflective amplification attacks, and present several packet
sequences that cause network middleboxes to respond with
substantially more packets than we send.

We scanned the entire IPv4 Internet to measure how many
IP addresses permit reflected amplification. We find hundreds
of thousands of IP addresses that offer amplification factors
greater than 100×. Through our Internet-wide measurements,
we explore several open questions regarding DoS attacks,
including the root cause of so-called “mega amplifiers”. We
also report on network phenomena that causes some of the
TCP-based attacks to be so effective as to technically have
infinite amplification factor (after the attacker sends a constant
number of bytes, the reflector generates traffic indefinitely).
We have made our code publicly available.

1 Introduction

Volume-based distributed denial of service (DDoS) attacks
operate by producing more traffic at a victim’s network than
its capacity permits, resulting in decreased throughput and
limited availability. An important component in the arsenal of
a DDoS attacker is the ability to amplify its traffic. Instead of
sending traffic directly to a victim V , the attacker spoofs V ’s
source address, sends b bytes to some amplifier host A, who
then “replies” to V with α · b bytes for some α > 1. In this
manner, the attacker hides its IP address(es) from the victim,
making it difficult to simply filter the attack traffic at a firewall,
and increases its effective capacity by the amplification factor
α.

Some reflected amplification attacks can elicit impressive
amplification factors. Among the most notable, DNS has been
shown to have an amplification factor of 54, while NTP offers
up to 556.9 [32]. Misconfigured Memcached [37] servers can
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Figure 1: The maximum amplification factor we obtained per
IPv4 address, based on several Internet-wide scans. (Note: the
axes are log-scale.)

provide amplifications over 51,000 [8, 40], and were used
against Github in 2018 in the largest known DDoS attack to
date, achieving 1.35 Tbps at peak [14].

To date, almost all reflected amplification attacks have lever-
aged UDP. In fact, to the best of our knowledge, there are no
known TCP-based reflected amplification attacks that send
beyond a single SYN packet.1 This is because such attacks ap-
pear virtually impossible: to go beyond the SYN would seem
to require an attacker to (1) guess the amplifier’s 32-bit ini-
tial sequence number (ISN) in their SYN+ACK packet2 and
(2) prevent the victim from responding to the amplifier with a
RST [23].

In this paper, we show that it is indeed possible to launch
reflected amplification attacks with TCP beyond a single SYN
packet without having to guess initial sequence numbers. The
key insight is to not elicit responses from the destination, but
rather from middleboxes on the path to the destination.

Many middleboxes (especially nation-state censors) inject
block pages or other content (such as RST packets) [13, 31,
42, 46] into established TCP connections when they detect
forbidden requests. Moreover, because middleboxes cannot
rely on seeing all packets in a connection [7], they are often
designed to operate even when they see only one side of
the connection. Our attacks tend to leverage non-compliant
middleboxes that respond without having to observe both
ISNs. Our measurements show that such middleboxes are
surprisingly common on today’s Internet, and that they can

1We discuss non-reflected TCP-based amplification attacks in Section 8.
2We will use + to denote when a single packet has multiple TCP flags set.
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lead to amplification factors surpassing even many of the best
UDP-based amplification factors to date.

We introduce a novel application of a recent network-based
genetic algorithm [6] that discovers sequences of TCP packets
that elicit large amplification factors from middleboxes.

We perform a series of IPv4-wide scans of the Internet
using ZMap [10], to identify how many hosts can serve as
amplifiers and quantify their amplification factor. Figure 1
provides an overview of the maximum amplification factor we
were able to get from all IP addresses after several Internet-
wide scans. We find 386,187 IP addresses that yield an am-
plification factor of at least 100×; 97,079 IP addresses that
elicit a larger amplification factor than the infamous NTP
attack [32], and over 192 IP addresses that responded with a
higher amplification factor than Memcached [8].

Compared to SYN-only reflective amplification attacks,
our attack identifies two orders of magnitude more IP ad-
dresses [15, 16], and we also find amplification factors above
2,500×.

In fact, we find many hosts that effectively have an infinite
amplification: in response to one or two attack packets, these
machines respond at their full capacity indefinitely (barring
packet drops) without any additional attacker involvement.
Czyz et al. [9] observed similar behavior when studying NTP
amplification, and called such hosts “mega-amplifiers.” We at
last answer the open question of why some hosts provide such
abnormally high amplification factors: we show that many
are actually sustained by the victims themselves, and others
are due to routing loops.

Collectively, our results show that there is significant, un-
tapped potential for TCP-based reflective amplification at-
tacks. To enable this new area of study, we have made our
code publicly available at https://geneva.cs.umd.edu/
weaponizing.

Contributions We make the following contributions:

• We introduce a novel application of genetic algorithms to
discover and maximize the efficacy of TCP-based reflective
amplification attacks, and identify 5 attacks in total.

• We scan the IPv4 Internet to determine how many IP ad-
dresses can be used as TCP-based amplifiers, and their
amplification factor.

• We confirm that these amplified responses typically come
from network middleboxes, including government censor-
ship infrastructure and corporate firewalls.

• We resolve the open question of the root causes of “mega-
amplifiers.” We attribute them to infinite routing loops and
what we call “victim-sustained amplification”, in which
victims’ default responses (RSTs) actually induce the re-
flector to send more data without additional effort from the
attacker, leading to virtually infinite amplification.

The rest of this paper is organized as follows. We review
background in §2. In §3, we present novel techniques for dis-

covering new TCP-based amplification attacks, and the results
from applying these techniques to live censoring middleboxes.
Next, we describe our methodology (§4) and results (§5) from
scanning the entire IPv4 Internet with our newfound attacks.
We explore “mega-amplifiers” in §6. We discuss ethical con-
siderations and our responsible disclosure in §7, related work
in §8, potential countermeasures in §9, and conclude in §10.

2 Background

Here, we define our threat model and review details of TCP
and in-network middleboxes that are relevant to our attacks.

Threat Model To maximize the applicability of our attacks,
we make very few assumptions about the adversary’s capa-
bilities. In particular, we assume a completely off-path at-
tacker: it cannot eavesdrop, intercept, drop, or alter any pack-
ets other than the ones destined to it. We also assume that the
attacker has the ability to source-spoof its victim’s IP address.
This would not be possible if the attacker’s network performs
egress filtering—that is, if it verified that the packets leav-
ing its network had IP addresses originating from within its
network—but egress filtering is still not yet widely deployed
in practice [4, 15, 39].

TCP Basics To ensure in-order delivery of bytes, both ends
of a TCP connection assign 32-bit sequence numbers to the
bytes they send. TCP connections begin with a three-way
handshake, during which the end-hosts inform one another of
their (random) initial sequence number (ISN). In a standard
three-way handshake, the client sends a SYN packet contain-
ing its ISNclient, to which the server responds with a SYN+ACK
that contains both its own ISNserver and ISNclient + 1 to ac-
knowledge the client’s ISN. Finally, the client acknowledges
ISNserver by including it (plus one) in an ACK packet. Follow-
ing this, a typical client sends a PSH+ACK packet containing
its application-layer data (e.g., an HTTP GET request).

For a TCP connection to complete, the ISNs must be ac-
knowledged with perfect accuracy. If the client were to send
an ACK acknowledging anything but ISNserver+1, the server
would not accept the connection.

TCP-based Reflection Attacks In a reflection attack, an
adversary sends to a destination r a packet that spoofs the
source IP address to be that of victim v. As a result, r will
believe v sent the packet, and will send its response to v.
Reflection can be useful to hide the attacker’s identity from
the victim, and is commonly used when the reflector r is also
an amplifier, sending more data to v than r received from the
attacker.

Note that an adversary within our threat model cannot fea-
sibly complete a three-way handshake in a reflection attack.
The adversary would send the SYN while source-spoofing v,
and thus the server’s SYN+ACK—with ISNserver—would be
sent to v, not the attacker. To complete the handshake, the
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attacker would have to send a source-spoofed ACK, but would
only have 2−32 chance of guessing the correct ISNserver. More-
over, even if the adversary were to guess ISNserver, the victim
(if online) will respond to the server’s spurious SYN+ACK with
a RST, thereby tearing down the connection at the server.

Given these challenges, prior work assumed that TCP-
based reflection attacks were limited to the initial handshake,
in which the attacker sends a source-spoofed SYN and does not
try to guess the appropriate ACK, let alone send an application-
layer PSH+ACK [15,16]. Kührer et al. [16] showed that a single
TCP SYN can result in a surprising amount of amplification.
Compliant servers amplify a small amount because they re-
transmit SYN+ACKs a handful of times, until they timeout,
receive the appropriate ACK, or receive a RST from the victim.
Kührer et al. also found a few non-compliant machines on
the Internet that respond to SYNs with many more packets,
affording a greater amplification [15, 16].

In this work, we discover that middleboxes enable more so-
phisticated TCP-based reflected attacks beyond a single SYN.
Compared to prior work, these new middlebox-enabled at-
tacks yield even higher amplification rates and provide larger
numbers of amplifiers that attackers can use.

Middleboxes A middlebox is an in-network device that sits
on the path between two communicating end-hosts, and can
monitor, filter, or transform packet streams in-flight. Unlike
traditional network devices like routers and switches, middle-
boxes operate not only on packets’ headers, but also on their
payloads using Deep Packet Inspection (DPI).

Middleboxes have been used for myriad network function-
ality applications [2, 35, 44], including firewalls. Firewalls
allow administrators to limit what content is viewable by
end-hosts within their networks.

Some of the most widespread and pernicious deployments
of firewall middleboxes are by nation-state censors, often
in an attempt to suppress access to information. Censoring
middleboxes are typically located at the nation’s borders (or
within the nation’s ISPs), and are commonly deployed at
massive scales so that they may monitor all traffic traversing
the censoring nation-state [3, 24, 45].

Censoring firewalls typically identify forbidden keywords
or domains in plaintext traffic, DNS requests, or TLS server
name indication (SNI) fields. Once a censoring middlebox
determines a connection should be censored, it can do so in
different ways: by dropping offending packets [5], injecting
RST packets to tear down the connection [6,42], injecting false
DNS responses [42,46] or—critical to this work—by injecting
block pages in response to forbidden HTTP requests [22, 41].

Middleboxes often track the content of connections across
multiple packets to handle re-ordered or dropped packets.
However, middleboxes may not see packets in both directions.
This is because the Internet can exhibit route asymmetry,
whereby packets between two end-hosts may traverse dif-
ferent paths [26]. Consequently, a middlebox may only see
one side of a TCP connection (e.g., the packets from client

to server). To handle this asymmetry, middleboxes often im-
plement non-compliant or partial TCP reassembly, allowing
them to still block connections even though they don’t see all
of the packets in a connection.

Middleboxes’ resilience to missing packets presents an op-
portunity to attackers: a reflecting attacker may not need to
complete the three-way handshake so long as it can convince
the middlebox that the handshake had been completed. Com-
bined with the packets they inject—especially block pages—
middleboxes could be attractive targets for reflected amplifica-
tion. In the remainder of this paper, we show packet sequences
that trick middleboxes into responding, and we show that mid-
dleboxes can yield very large amplification factors.

3 Discovering TCP-based Reflection Attacks

In this section, we present the first non-trivial, TCP-based
reflected amplification attacks. We present a novel way to
automatically discover new amplification attacks (§3.1), train
it against a set of censoring middleboxes (§3.2), and report
on the amplification attacks we discovered (§3.3).

3.1 Automated Discovery of Amplification
Our goal is to identify sequences of packets that will elicit
amplified responses from middleboxes, without requiring
us to establish a legitimate TCP connection or guess ISNs.
This requires identifying non-compliant TCP behavior. Un-
like UDP [9] or TCP SYN-based [16] reflected amplification
attacks—which take advantage of weaknesses in protocol
designs—we must find weaknesses in TCP implementations.

Recent efforts have created automated ways to identify in-
put sequences that cause incorrect middlebox behavior [6,43].
In 2019, Bock et al. developed Geneva, an open-source au-
tomated tool for discovering packet manipulation sequences
(called “strategies”) to evade censorship [6]. Geneva uses a
genetic algorithm to evolve censorship-evasion techniques by
composing five packet-level actions: duplicate, tamper, frag-
ment, drop, and send. Over a series of discrete “generations,”
Geneva tests dozens of packet manipulation strategies directly
against real-world censors. Geneva evaluates strategies with a
fitness function: a numeric score that captures how successful
a given strategy is at evading censorship. Strategies that re-
ceive a higher score are more likely to survive and pass their
“genetic code” to the next generation.

We make two modest changes to Geneva to find new am-
plification attacks against middleboxes:

Initial Packet Sequence Geneva operates by manipulating
an existing packet sequence, such as a real client’s packets
as it browses the web. To discover new amplification attacks,
we use a single PSH+ACK packet with a well-formed HTTP
GET request with the Host: header set to a given URL (we
describe which URLs we use in §3.2). We chose HTTP as
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Figure 2: Rank order plot of maximum amplification factor
from Quack-identified IP addresses. The maximum amplifi-
cation factor was 7,455×.

the input traffic because recent work demonstrated both how
widely deployed HTTP filtering middleboxes are [31] and
that many HTTP censors inject large block pages in response
to small web requests [41].

Fitness Function Our goal is to find packet sequences that
maximize amplification from middleboxes. The straightfor-
ward approach would be to set the fitness function to the
amplification factor itself (number of bytes received divided
by the number of bytes sent). However, we found that this
sometimes encourages Geneva to try to elicit many small
(e.g., SYN+ACK) packets from the end-host, rather than larger
(e.g., block page) packets from middleboxes. To encourage
Geneva to elicit responses specifically from middleboxes, our
fitness function is the amplification factor, but ignoring all
incoming packets that have no application-level payload. This
optimization applies only to the fitness function; we report on
all bytes sent and received in our results.

3.2 Training Methodology
Geneva trains on live networks, and thus requires destina-
tion IP addresses to train against. To identify destination IP
addresses that are likely to have middleboxes on the path
from our measurement machine to them, we use data from
Quack [41], a part of the Censored Planet [30] platform that
performs active measurements of censorship. Quack regularly
sends HTTP GET requests with potentially forbidden URLs
in the Host: header to echo servers around the world, and
detects injected censorship responses from middleboxes.

We use Quack’s daily reports [27] to find endpoints that are
likely to have middleboxes on the path, and the URLs likely
to trigger them. We downloaded Quack’s March 28th, 2020
dataset and extracted the IP addresses that experienced HTTP
injection interference. This identified 209 IP addresses with
active censoring middleboxes on their path, along with the
offending URLs. We began training against them on March
29th.

To train Geneva with an IP address from Quack’s data, we
set the destination of the generated traffic to the IP address,

Strategy Response % Max Amplification
〈SYN; PSH+ACK〉 69.5% 7,455×
〈SYN; PSH〉 65.7% 24×
PSH 44.6% 14×
PSH+ACK 33.1% 21×
SYN (with GET) 11.4% 572×

Table 1: TCP-based reflected amplification attacks discovered
against 184 Quack servers. Each packet with the PSH flag set
includes an offending HTTP GET request in the payload.

and set the Host: header in the HTTP GET request to one of
the URLs that triggered interference to this IP address.

We let Geneva train for 10 generations with an initial popu-
lation of 1,000 randomly generated strategies3. Training took
approximately 25 minutes per IP address. To limit our im-
pact on the network, we spaced our experiments out over four
days; we sent each end-host just 2.8 Kbps of traffic on average
(comparable to Quack’s scans).

Before each experiment, we repeated Quack’s methodol-
ogy to the destination IP address to confirm it is still expe-
riencing interference, and we skipped IP addresses that we
did not experience interference. During our experiments, 25
of the 209 IP addresses (11.9%) stopped responding or no
longer experienced interference, consistent with the churn
rates seen in Quack’s original experiments [41]. This left 184
IP addresses with active censoring middleboxes that Geneva
trained against. Next, we present the packet sequences Geneva
discovered.

3.3 Discovered Amplification Attacks
For 178 (96.7%) of the 184 IP addresses from the Quack
dataset, Geneva found at least one packet sequence that
elicited a response, and achieved an amplification factor
greater than 1 for 169/178 (94.9%). Figure 2 shows the maxi-
mum amplification factors we discovered across all of these
169 hosts. Some of the middleboxes provided high ampli-
fication factors: 17 (9.5%) had greater than 100×, and the
maximum amplification factor was 7,455×.

We identify five unique packet sequences that elicit re-
sponses and five additional modifications to improve ampli-
fication factor. We summarize them in Table 1 and describe
them in turn below.

3.3.1 Amplifying Packet Sequences

〈SYN; PSH+ACK〉 The most successful strategy we discov-
ered sends a SYN packet (with no payload) with sequence
number s, followed by a second PSH+ACK packet containing
sequence number s+1 and the forbidden GET request. Al-
though this strategy comes at the cost of an entire additional
packet, we find it to be highly effective at getting responses

3We forgo a full hyperparameter sweep to limit our impact on end hosts.
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from middleboxes. It elicited responses from 128/184 (69.6%)
of the middleboxes, with a maximum amplification factor of
7,455×.

From a middlebox’s perspective, this packet sequence
looks like a traditional TCP connection, missing the server’s
SYN+ACK and the client’s ACK. As with normal TCP connec-
tions, the sequence number of the SYN is one less than the
sequence number of the PSH+ACK. As discussed in §2, middle-
boxes must be resilient to asymmetric routes, so it is expected
that they would respond while missing the server’s SYN+ACK.
We note this sequence omits the client’s ACK in a typical
handshake, though the PSH+ACK may suffice to replace it.
Geneva tried adding the client’s ACK, but eliminated it during
training—in follow-up experiments, we verified that adding
the ACK had no effect on how the middleboxes responded.

〈SYN; PSH〉 This sequence sends a SYN with sequence num-
ber s (and no payload) followed by a PSH with sequence num-
ber s+1 and the forbidden GET request as its payload. Note
that this is the same as the 〈SYN; PSH+ACK〉 strategy, but with
the ACK flag cleared in the second packet.
〈SYN; PSH〉 elicited responses from 121/184 (65.7%)

of middleboxes, with a maximum amplification of 24×.
Most (118, or 97.5%) of these also responded to the
〈SYN; PSH+ACK〉 sequence with the same amplification fac-
tors: those middleboxes appear not to be sensitive to the pres-
ence of the ACK flag on the packet containing the request.
However, 10 middleboxes responded only when the ACK flag
was set and 3 middleboxes responded only when it was not.
We explore these differences more deeply with full IPv4 scans
in §5.

We also explored if an additional ACK packet between the
SYN packet and the PSH packet would improve response rate.
Like with the 〈SYN; PSH+ACK〉 sequence, we found it had no
effect on the middleboxes’ responses.

PSH This sequence sends only a single packet: a PSH with
the forbidden GET request. It elicited responses from 82
(44.6%) of middleboxes, with a maximum amplification factor
of 14×. Note that this is the same as the 〈SYN; PSH〉 sequence,
without the SYN. All but one (98.8%) of the middleboxes
that responded to just the PSH also responded to 〈SYN; PSH〉,
indicating that the SYN was not necessary. For those hosts,
avoiding the SYN resulted in an increase in amplification fac-
tor.

PSH+ACK This also sends a single packet: a PSH+ACK with
a forbidden GET request. No TCP-compliant host should re-
spond to this packet with anything besides an empty RST, as
there is no three-way handshake. Still, 61 (33.2%) middle-
boxes responded with injected responses, with a maximum
amplification factor of 21×.

This strategy is identical to the 〈SYN; PSH+ACK〉 sequence,
minus the SYN packet. We find that all of the middleboxes
that responded to a lone PSH+ACK also responded to the
〈SYN; PSH+ACK〉, with the responses of the same size. For

those hosts, sending the additional SYN strictly decreases the
amplification factor.

Most (51, or 83.6%) of the middleboxes that responded
to PSH+ACK also responded to PSH; these middleboxes’
responses were the same for both strategies, indicating
no change in amplification. 10 middleboxes responded to
PSH+ACK but not to PSH; these gave PSH+ACK its greatest am-
plification factor. However, 31 middleboxes responded to PSH
but not PSH+ACK. Overall, PSH elicited more responses, but
PSH+ACK elicited larger ones.

SYN with Payload This strategy sends the forbidden GET
request as the payload of a single SYN packet. This elicited
the fewest responses—21 (11.4%) of the middleboxes—but
one of the largest amplification factors: 527×.

It is not common to send payloads in SYN packets4, which
led us to hypothesize that the middleboxes that responded to
this might only be looking at the payloads. But this appears
not to be the case: only 3 (14.3%) of the middleboxes that
responded to SYN also responded to PSH+ACK, and only 6
(28.6%) also responded to PSH.

3.3.2 Packet Sequence Modifications

Geneva identified five additional modifications to the above
packet sequences that improve the amplification factor for
some middleboxes. One of these (increasing TTLs) never
resulted in lower amplifications, and appear to be worth doing
against all middleboxes. Four improve amplification for some
middleboxes but lower it for others; to use such modifications
in a practical setting, an attacker would ideally identify the
middleboxes it uses ahead of time.

Increased TTLs Every IP header includes a time-to-live
(TTL) field to limit the number of hops a packet should take;
routers are supposed to decrement this at each hop, and drop
the packet if the TTL reaches zero. Against one middlebox,
Geneva learned to increase the TTL of both packets in the
〈SYN; PSH+ACK〉 sequence to its maximum value (255) to
improve the amplification factor. It is very surprising that the
TTL would have any impact on the amplification factor; the
default TTL was already large enough to reach the destination.

To understand its root cause, we sent packet sequences to
this middlebox with TTLs ranging from 0 to 255, and counted
the number of responses for each. We find a perfectly linear re-
lationship between TTL and amplification factor: we received
t−13 block pages for all TTL values t ≥ 13. At the maximum
TTL value (255), it sent 242 copies of its block page!

This behavior can be explained by routing loops in the
network of the censoring middlebox. Each time the packet
sequence circles the routing loop, it re-crosses the censoring
middlebox, causing it to re-inject its block page. That this
only works for TTLs greater than 13 indicates that the routing
loop is 13 hops from our measurement host. We show in §5

4This is generally reserved for TCP Fast Open, which is rare in practice.
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that routing loops are surprisingly common on the Internet at
large, and they can be exploited by attackers for significant
improvements to the amplification factor.

We found that setting a high TTL on packets has no effect
on the response rate of any of the other packet sequences,
so this modification can be made at no cost to freely exploit
routing loops for maximum amplification.

Increased wscale Window scaling (or wscale) is a TCP
option that controls how large the TCP window can grow.
Geneva discovered an optimization that gets 7 (3.8%) more
middleboxes to respond to the 〈SYN; PSH+ACK〉 sequence:
setting the wscale TCP option in the SYN packet to an integer
greater than 12. Based on the block page these middleboxes
injected, we believe they are instances of Symantec’s Web
Gateway (SWG).

To understand this behavior, we sent the modified packet se-
quence 1,000 times to the candidate middleboxes in Quack’s
dataset, and repeated this experiment five times. Strangely,
in each case, the middleboxes responded only ∼25% of the
time. We could successfully ping the end-hosts behind each
SWG with innocuous requests, suggesting that packet drops
are not the root cause of the reduced response rate. Varying
the time between each packet sequence had no effect on the
response rate, indicating we were not overloading the SWGs.
The behavior is also not affected by packets sent by the end-
host: if we limit the TTL of all of our packets such that they
reach the middlebox but not the end-host, the middlebox still
injects content to 25% of requests. Finally, altering the actual
value of wscale had no effect on response rate. We do not
understand why SWG is sensitive to this option.

Like with increased TTLs, increasing wscale had no ad-
verse effect on response rates or sizes. However, because
wscale is a TCP option, it requires additional bytes, thereby
potentially lowering the amplification factor.

TCP Segmentation One modification Geneva identified
for some middleboxes is to simply segment the forbidden
GET request across multiple packets, either by adding an
additional packet to single-packet sequences, or across the
two packets in the 〈SYN; PSH〉 or 〈SYN; PSH+ACK〉 sequences.
Geneva discovered that 5/184 (2%) middleboxes would send
the block page a second time, once for each packet segment.
For these middleboxes, this serves as an optimization for the
amplification factor: although it comes at the cost of an addi-
tional packet with some payload, the payoff is a doubling in
traffic elicited from the middleboxes. Strangely, this modifica-
tion only works for two segments: any further segmentation
causes two of the middleboxes to not respond, and the other
three only send a maximum of two block pages.

Although this optimization can improve the amplification
from middleboxes with this behavior, 26 others (14%) are
unable to perform packet reassembly and stop responding
entirely. Worse, for the middleboxes that do perform reassem-
bly and still respond, segmenting the request across multiple

packets lowers the amplification factor.

FIN+CWR Another modification Geneva identified against
four (2%) middleboxes was to change the TCP flags of the
PSH+ACK packet in the 〈SYN; PSH+ACK〉 sequence to FIN+CWR.
The CWR flag—“Congestion Window Reduced”—is used for
TCP’s Explicit Congestion Notification (ECN), and generally
should not be combined with a FIN flag. The modified packet
sequence elicits 12 copies of the middleboxes’ block pages,
each sent 0.4 seconds apart. The block page duplication in-
creases the amplification factor of these middleboxes to 301×.
If the CWR flag is not present on the packet, no response is
sent. According to the injected block pages, these middle-
boxes appear to be instances of Fortinet Application Guard;
this modification appears to only improve amplification factor
for these middleboxes.

Shorter HTTP Geneva discovered an optimization against
one middlebox: cutting off the four bytes in the HTTP
GET request that immediately follow the forbidden URL
(\r\n\r\n). Although this slightly improves the amplifica-
tion factor for one middlebox, none of the other 183 middle-
boxes responded. This suggests that it is important for the
HTTP GET request to be well-formed.

Failed Approaches We expected that changing the TCP
window in our packet sequences might have an impact on
amplification. Recall that TCP window size determines how
much data the other endpoint can send before expecting an
acknowledgement. However, we found that none of the mid-
dleboxes respected this TCP feature. Similarly, though TCP
mandates that data sent should not exceed the maximum seg-
ment size (MSS) TCP option, every middlebox ignored this
option.

4 Internet Scanning Methodology

We perform ZMap [10] scans of the IPv4 Internet to measure
the effectiveness each of the attack packet sequences from §3.

Modifications to ZMap ZMap allows us to create arbitrary
probe packets with the “probe modules”; we wrote a custom
probe module for the packet sequences identified by Geneva.
ZMap does not natively have the ability to send multiple dis-
tinct packets in each probe (e.g., SYN followed by PSH+ACK),
so we modified ZMap to add this capability.

Selecting Forbidden URLs Quack’s dataset contains 1,052
URLs that triggered censorship. Ideally, we could perform full
Internet-wide scans for each URL and determine which ones
produce the highest amplification. Unfortunately, this would
take over 6 weeks of scanning at full 1 Gbps line rate per
Geneva strategy, and would likely have diminishing returns.

Instead, we chose to estimate the smallest combination
of URLs that collectively elicit responses from the largest
number of IP addresses. To do this, we construct every set of
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Figure 3: Types of attacks we find. Thick arrows denote amplification; red ones denote packets that trigger amplification. We find
that infinite amplification is caused by (d) routing loops that fail to decrement TTLs and (e) victim-sustained reflection.

size 1 ≤ N ≤ 7 of the 1,052 URLs from the Quack dataset,
and for each set compute the number of Quack IP addresses
it would have triggered.

We find the ideal set to be of size N = 5, each coinciden-
tally from a different website category as identified by the Cit-
izen Lab Block List [17]: www.youporn.com (pornography),
plus.google.com (social networking), www.bittorrent.com
(file sharing), www.roxypalace.com (online gambling), and
www.survive.org.uk (sexual health services). These five key-
words collectively elicit responses from 83% of the Quack IP
addresses, after which there are diminishing returns (adding a
sixth keyword only increased the response rate by 3.6%).

We acknowledge that the Quack dataset may not be rep-
resentative of the entire Internet. Moreover, coverage of IP
addresses is not necessarily the same as coverage of middle-
boxes; however, few IP addresses (4%) in the Quack dataset
share the same /24 prefix, so we expect little middlebox over-
lap. It is possible that other keywords will elicit broader cov-
erage or greater amplification; we leave this to future work.

Data Collection From April 9th to April 26th, 2020, we
performed 5 sets of Internet scans, one for each mutually
exclusive packet configuration (§3.3). For each set, we per-
formed 7 Internet-wide scans: one for each of the 5 domains
and our two control scans (“example.com”, and no payload
at all). To avoid saturating our link, we scanned at 350 Mbps;
and each scan took approximately 2–4 hours. After each scan,
we aggregated the number of bytes and packets we received
from each IP address that responded to our probes. Follow-
ing convention, we include the size of the Ethernet header in
the size of our probes and response packets when computing
amplification factors.

5 Internet Scanning Results

This section presents the results of sending our attack packet
sequences from §3 to the entire IPv4 Internet. We make two
notes upfront that are important in understanding our results:

Responder variation Our packet sequences elicit a wide
range of behaviors. We broadly classify them in Figure 3;
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Figure 4: Rank order plot of the amplification factor received
from each IP address for the triggering payloads containing
www.youporn.com across all five packet sequences.

for some destinations and packet sequences, we get response
packets directly from destinations, from middleboxes (pre-
tending to be the destination), or some combination of the two.
We confirm in §5.3 that over 82% of the largest responses we
receive come from middleboxes, but unfortunately it is diffi-
cult to perform this analysis for every destination IP address
we send to. Thus, for consistency (and because middlebox de-
aliasing is difficult and error-prone), we report on the number
of destination IP addresses from which we can elicit responses
throughout this paper. We explore clustering and identifying
middleboxes by their responses in §5.4.

Infinite amplification We discover many IP addresses that
continue to respond, seemingly indefinitely, to our probes. The
amplification factors for these IP addresses are technically
infinite, but we report the (finite) amplification we obtained
during our scans. These tend to be orders of magnitude larger
than other hosts. We explore infinite amplifiers in §6.

5.1 Which strategies work best?
We begin by measuring the impact that packet sequence and
keyword have on response rate and amplification factor.

Figure 4 compares the amplification factors for each of
the 5 packet sequences with the URL www.youporn.com.
We immediately observe that each of these strategies elic-
its responses from over 5M destination IP addresses with
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〈SYN; 〈SYN;
URL SYN PSH PSH+ACK PSH〉 PSH+ACK〉
www.youporn.com 49.4 4.4 23.2 13.9 52.0
roxypalace.com 5.8 4.4 16.5 13.6 31.3
plus.google.com 7.4 7.0 5.9 13.4 14.9
bittorrent.com 3.7 3.2 3.8 10.6 13.7
survive.org.uk 4.4 2.8 2.4 11.0 11.2
example.com 3.4 2.9 2.8 11.2 8.4
empty 0.06 0.01 0.02 0.05 0.06

Table 2: Total data received (GB) from the top 100,000 IP
addresses for each combination of target URL and packet
sequence. Bolded is the maximum value for each target URL.

〈SYN; 〈SYN;
URL SYN PSH PSH+ACK PSH〉 PSH+ACK〉
www.youporn.com 116,120 67,503 78,830 92,765 97,689
roxypalace.com 128,843 52,168 63,080 86,010 97,213
plus.google.com 39,177 27,815 24,827 54,916 63,090
bittorrent.com 33,187 19,171 24,682 47,348 193,754
survive.org.uk 98,038 14,600 13,060 45,953 43,927
example.com 28,909 15,669 15,911 46,469 27,962
empty 65 27 49 42 59

Table 3: Number of IP addresses with amplification factor
over 100× for each combination of target URL and packet
sequence. Bolded is the maximum value for each sequence.

amplification greater than one. Moreover, we find that all of
them elicit very large amplification factors; for each packet
sequence, there are over 50,000 destination IP addresses that
yield over 100×.

To focus on the heaviest hitters, Table 2 compares the total
volume of traffic generated from the top 100,000 IP addresses
for each scan, and Table 3 shows the number of IP addresses
with amplification factor greater than 100×. 〈SYN; PSH〉 and
〈SYN; PSH+ACK〉 get responses from the largest number of
unique IP addresses: 29× more than the SYN scan. Despite re-
quiring an additional packet, they also yield higher amplifica-
tion factors for most of the top 1,000 IP addresses, and elicited
the highest total amount of traffic across every URL. Sending
a SYN packet with a forbidden HTTP GET was surprisingly
effective at eliciting responses: for half of the URLs, it had the
most IP addresses with an amplification factor greater than
100×.

The choice of URL has a strong impact on how well a given
packet sequence amplifies. Figure 5 shows the amplification
factors from using each of the keyword/strategy combination.

Overall, www.youporn.com was the most effective for
eliciting the most responses, with two notable exceptions.
First, www.bittorrent.com elicited double the number of
IP addresses with amplification factor greater than 100×.
The source of this is highly amplifying censorship of two
networks with /16 prefixes: one run by the University of
Ghent; the other, the City of Jacksonville, Florida. Sec-
ond, roxypalace.com on SYN packets similarly elicited re-
sponses from more IP addresses than any other URL, and
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Figure 5: Rank order plot of the amplification factor received
from each IP address for the 〈SYN; PSH+ACK〉 packet sequence
across all seven scanning payloads.

this is largely due to triggering the border firewall at Brigham
Young University, which runs a /16 prefix.

Surprisingly, scans for the control keyword example.com
trigger many amplifiers. It under-performed every other key-
word in number of IP addresses and amount of data elicited,
but thousands of IP addresses still responded with 20× ampli-
fication. It is possible the middleboxes who respond to this do
so as a means of access control. Scans with an empty payload
received the fewest amplifiers, smallest total data elicited, and
smallest total amplification: the 〈SYN; PSH+ACK〉 scan elicited
three orders of magnitude more data than an empty SYN scan.

Summary The 〈SYN; PSH+ACK〉 packet sequence with
www.youporn.com is overall the most effective at eliciting
amplification, but other URLs and sequences are needed to
trigger specific, large networks.

5.2 Are these actually amplifiers?

We next explore if these IP addresses can be (ab)used for real-
world attacks. In a real attack, an attacker would not send just
one trigger packet sequence; instead, she would repeatedly
send trigger packet sequences to these IP addresses to amplify
the response traffic. To test if the IP addresses we identify
are true amplifiers, we perform an experiment with the top 1
million IP addresses with the highest amplification factor from
the 〈SYN; PSH+ACK〉 scan with www.youporn.com keyword.
Using ZMap, we perform two independent scans to these IP
addresses: first, by sending 5 trigger packet sequences to each
IP address, and second (as a control), just one trigger packet
sequence5.

Figure 6 presents the increase factor: the ratio of bytes
we received from each IP address when sending 5 probes to
the bytes received from 1 probe. Perfect amplifiers have an
increase factor of 5×. Our results suggest that the majority of
the top 1 million IP addresses are true amplifiers. Over 46%
of IP addresses responded with exactly 5× as much data, and

5When sending multiple probes, we modify ZMap so that each probe is
sent from a different source port, so the packets are not identical.
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Figure 6: The increase factor in the number of bytes we re-
ceive between sending 5 probes and sending 1 probe. 46% of
IP addresses responded with exactly 5× as much data.

another 30% responded with between 2× and 5× as much
data, likely representing amplifiers that missed or dropped
one or more of our packets. Notably, many of the IP addresses
that sent the most data do not increase by the same rate. Of
the top 100 amplifiers, none of them increased by exactly a
factor of 5×, and only 10 increased by 4–6×.

5.3 Are these middleboxes?

Next, we determine if the responses we receive are truly com-
ing from middleboxes. We performed a traceroute using a
custom ZMap probe module on the top million IP addresses
by bytes received in our 〈SYN; PSH+ACK〉 www.youporn.com
scan. Our ZMap module sent three TTL-limited TCP SYN
packets for each TTL between 10 and 25 to each of the million
hosts, and recorded the resulting ICMP TTL-exceeded mes-
sages. This allowed us to construct a (partial) traceroute for
each target for hops 10–25. Out of the million targets, 99.5%
provided at least one router hop, with an average of at least 6
hops per traceroute.

For each target, we extracted the last hop that we received
a TTL-exceeded message for (i.e., the last hop we learned
on the traceroute to the target). We then sent a follow up
〈SYN; PSH+ACK〉 sequence with www.youporn.com to the
target, but TTL-limited to the last known hop. This probe is
certain to not reach the target, as it should generate a TTL-
exceeded message by the last-hop router. Therefore, if we still
receive a response from the endpoint, we can tell the response
is coming from a middlebox along the path to the target, and
not the target itself.

If we do not receive a response, we cannot conclude that
responses normally come from the target endpoint, as it could
be that our traceroute was incomplete: there may be a mid-
dlebox further along the path but still before the endpoint.
However, we can interpret the presence of a response to our
TTL-limited probe as confirmation that it was produced by a
middlebox.

Figure 7 shows the results of this scan, binning IP addresses
into bins of size 1,000 and plotting the fraction of the IPs in
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Figure 7: The fraction of the top million hosts that we confirm
are middleboxes, using TTL-limited probe. The small gap
at x ≈ 100,000 and the large gap in the middle of the plot
correspond to networks that block traceroutes at their borders.
Accounting for this, we find injected responses from 82.9% of
the top million IP addresses are from confirmed middleboxes.

the bin that we identified as middleboxes. Overall, 36.8% of
the 1M targets responded to our TTL-limited probe, positively
confirming their responses were produced by a middlebox.
Notably present, however, are two gaps in the graph in which
almost no responses were received:

The small gap has ∼10,000 IP addresses (104,000 ≤ x≤
114,000). All of these IPs are in three /20-sized subnets that be-
long to the Texas State Technical College Harlingen (TSTCH).
Their responses correspond to block pages generated by a Son-
icWall network security appliance, a common middlebox we
see in our data. It appears that TSTCH blocks traceroutes
at its border, meaning that our last-observed traceroute hop
occurs before the SonicWall appliance.

The larger gap has ∼465,000 IP addresses (213,000 ≤ x≤
678,000). 98.6% of them geolocate to Saudi Arabia. Looking
at their traceroutes, their last hops comprise just 2,068 unique
router IPs, with 90% of IP addresses sharing only 10 last-
hop routers (all within Saudi Arabia). It appears that Saudi
Arabia also blocks traceroutes at their border, preventing us
from being able to traceroute into the country. However, the
response that comes back from 97% of the IP addresses in this
block corresponds to the standard block page of Saudi Arabian
censorship, describing that the website is blocked, and also
suggesting a middlebox is responsible for this response.

Conservatively labelling the 10,000 IP addresses from
TSTCH and 97% of the 465,000 Saudi Arabian IPs as en-
countering on-path middleboxes increases the percent of IPs
that encounter on-path middleboxes to 82.9% of the million
targets we scanned. We conclude that responses from the
vast majority of IP addresses in our dataset are produced by
middleboxes.

5.4 What kind of packets do amplifiers send?

We analyzed the packets we received in our 〈SYN; PSH+ACK〉
scan with www.youporn.com. This scan received a total of
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#Responsive % Sending
Country IP addresses fingerprint Fingerprint
China 170,858,209 90.0% 3× RST+ACK (54)
S Korea 15,981,100 7.6% PSH+FIN+ACK (119)
Iran 8,612,544 75.7% PSH+FIN+ACK (402–405);

RST+PSH+ACK (54)
Egypt 2,909,897 89.8% RST+ACK (54)
Bangladesh 1,375,908 81.4% PSH+FIN+ACK (248)
Saudi Arabia 894,858 45.3% PSH+ACK (97);

2× PSH+ACK (1354)
Oman 596,546 94.7% RST (54)
Qatar 387,625 89.4% RST (54)
Uzbekistan 253,098 91.8% FIN+ACK (74)
Kuwait 173,126 31.3% PSH+FIN+ACK (114)
UAE 161,014 52.0% RST (54)

Table 4: Nation-states with nation-wide censorship infrastruc-
ture and the fingerprint they most frequently respond to clients
with. Numbers in parentheses denote packet sizes in bytes.

over 105 GB of data from 337 million IP addresses. For each
IP address, we generate a fingerprint from the response packet
sequence, consisting of a vector of (TCP flags, packet
size) tuples; this allows us to efficiently group IP addresses
that send us similar responses. We then counted the number
of IP addresses that sent each fingerprint. We ignore order to
allow for packet re-ordering.

Overall, we discover 63,662 unique fingerprints. Each
fingerprint represents a unique set of packets sent by ampli-
fiers. The fingerprint returned by the most IP addresses is
a sequence of three 54-byte RST+ACKs, which we received
from approximately 154 million IPs. This is a well-known
censorship pattern produced by the Great Firewall of China
(GFW) [6, 42], and using the MaxMind database [21], we
find 99.9% of these IPs geolocate to China. We note this is
weakly-amplifying, sending 162 bytes for our 149 byte probe.

The fingerprints representing the largest number of bytes
are less common. For example, the top fingerprint is 528,007
410 byte FIN+PSH+ACK packets and 525,110 RST+ACKs, sent
by a single IP address in India. We investigate these mega-
amplifiers more in §6. The largest fingerprints sent by more
than one IP address consist of a single SYN+ACK and multiple
megabytes worth of PSH+ACK packets containing data. These
appear to be sent by buggy TCP servers that simply respond
to our non-compliant GET request with real data. We find
approximately 746,000 IP addresses with this behavior.

5.5 Are these national firewalls?
We find that nation-state censorship infrastructure makes up
a significant fraction of the TCP amplifiers we discover. Fig-
ure 8 breaks down the amplification we see for the top 5
countries by number of amplifying IP addresses. Out of these,
all but the US have deployed nationwide Internet censorship
infrastructure [11, 12], visible by long flat plateaus in the
graph which indicate a large number of IP addresses with
uniform amplification. The US is a notable exception, and
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Figure 8: Rank order plot of the amplification factor by coun-
try for the www.youporn.com scan with the 〈SYN; PSH+ACK〉
packet sequence.

we explore why it is so prevalent later in this section. Ampli-
fication factors vary significantly country-to-country due to
different censorship methods.

By extracting fingerprints that were shared by many IP
addresses that geolocate to the same country, we can identify
censoring nation-states. For example, over a million IP ad-
dresses geolocate to Bangladesh and respond with a 248-byte
FIN+PSH+ACK. Table 4 shows a sample of censoring coun-
tries and their most popular fingerprint. At a slightly higher
amplification, we observe four similar fingerprints with two
packets each: a 402–405-byte FIN+PSH+ACK and a 54-byte
RST+PSH+ACK. We received these fingerprints from 8.6 mil-
lion IP addresses in Iran, representing 76% of all the respond-
ing IP addresses that geolocate to Iran.

The censorship infrastructure of Saudi Arabia also shows
prominently in our dataset: its fingerprint is three packets:
a 97-byte PSH+ACK and two 1354-byte PSH+ACKs, offering
an amplification factor of 18.9×. We received this finger-
print from over 400K IP addresses, 99% of which geolocate
to Saudi Arabia, comprising 45% of all the responding IP
addresses that geolocate to Saudi Arabia.

In general, we find the amplification factor from nation-
state censors is small: most countries we surveyed provide
less than 4× amplification. The GFW of China is the largest—
but also the weakest—amplifier we find. Curiously, we find
that the GFW has a different fingerprint between two of
our scans: the 〈SYN; PSH+ACK〉 scan with plus.google.com
elicited three RST+ACKs and a RST packet, but this extra RST
packet is missing in scans for www.youporn.com. This RST
was also absent when plus.google.com was sent with the
〈SYN; PSH〉 sequence. The presence of the RST raises the am-
plification factor of the GFW from 1.08× to 1.45×.

We do not understand why the GFW behaves differently
between these keywords and sequences. Researchers have hy-
pothesized that the RST+ACK and RST packets from the GFW
originate from different, co-located censorship systems [6,42];
our results support this theory, and even suggest that the block
lists themselves can be processed differently between the two
censorship systems depending on the sequences of packets.
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Figure 9: CDF of the increase factor in amplification of can-
didate looping IP addresses when scanned with a TTL of 255
and 64. Because the increase factor is affected by the number
of hops away an IP address is, we expect routing loops to have
an increase factor of at least 4. Larger increase factors are fur-
ther away from our scanner, limiting the overall amplification
factor from our perspective.

We also discover hundreds of IP addresses in routing loops
in Russia that contain censoring middleboxes with 250.9×
amplification. The highest amplifying nation-state censors
are two censoring ISPs located in Russia that seem to have
infinite routing loops in their network, that sent us packets
for weeks after our scans. We examine the effects of routing
loops more closely next in §5.6.

Nation-state censors pose a more significant threat to the
Internet than their amplification factor alone suggests. First,
nation-state censorship infrastructure is located at high-speed
ISPs, and is capable of sending and injecting data at incredibly
high bandwidths. This allows an attacker to amplify larger
amounts of traffic without worry of amplifier saturation. Sec-
ond, the enormous pool of source IP addresses that can be
used to trigger amplification attacks makes it difficult for vic-
tims to simply block a handful of reflectors [29]. Nation-state
censors effectively turn every routable IP addresses within
their country into a potential amplifier.

While nation-state censors are well-represented in our am-
plifiers dataset, other large non-censoring countries, such as
the US, are prevalent as well. Specifically for the US, we
observe a more diverse set of fingerprints: over 13,000 unique
fingerprints, compared to 7,553 in Russia, and under 3,000
from South Korea. This indicates a diversity of networks,
rather than a coordinated, nationwide deployment. Indeed,
we observe several university and enterprise firewalls that
respond with identifiable and amplifying fingerprints.

These results demonstrate that nation-state censors enable
TCP amplification attacks, but that they are far from the sole
contributor to this problem.

5.6 Routing Loops

Routing loops are the result of network misconfigurations, in-
consistencies, and errors in routing protocol implementations.
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Figure 10: The /24 prefixes with at least one routing loop,
rank-ordered by the fraction of their 256 IP addresses that
we observe to loop. Of the 2,763 looping prefixes, 54 (2%)
have over 90% of their IP addresses loop, but 1,705 (62%)
have only one looping IP address. (Note that the x-axis is
log-scale.)

Packets caught in a routing loop will typically eventually be
dropped when their TTL reaches zero. However, even a finite
routing loop can hypothetically have significant impact on
amplification factor. Suppose an amplifying middlebox were
in a routing loop; every time an offending packet traversed
the loop, it would re-trigger the middlebox. Such a scenario
would make the network self-amplifying: at no additional cost
to an attacker, the effective amplification rate of a middlebox
would be increased by the number of times the packet crosses
the middlebox in the routing loop.

The maximum value of TTL in the IPv4 header is 255, so
the number of times a single trigger packet sequence can elicit
responses from an RFC-compliant middlebox is `(255−d),
where d is the number of hops between the attacker machine
and the routing loop and ` is the number of times the packets
traverse the amplifying middlebox per loop.

So far, our scans were conducted with a TTL value of 255,
in accordance with the optimizations discovered by Geneva in
§3. We performed follow-up scans with a reduced TTL value
in order to observe which IP addresses send us a correspond-
ing reduction in the number of packets, allowing us to identify
which amplifiers involve routing loops.

For this experiment, we use the 〈SYN; PSH+ACK〉 packet
sequence with the www.youporn.com trigger keyword. We
use the top 1 million hosts (by number packets sent during the
scans), and perform two follow-up scans to these IP addresses:
one with the TTL set to 255 and one set to 64 (approximately
1/4 the value). As we are knowingly re-triggering machines
with potentially enormous amplification factors, we reduced
the scanning speed to 100 kbps6.

We can identify routing loops by comparing the number of
packets we receive per IP address across scans. For a routing
loop d hops from our scanner, we expect a probe with TTL =
255 to receive (255−d)/(64−d) times more packets than

6Despite our low send rate, we received back on average around 800 Mbps,
representing a total amplification of 8,000× for this experiment.
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a probe with TTL = 64. Note that this value increases as d
increases, and, for a routing loop, has a minimum value of
∼4 (when the routing loop is zero hops away). Therefore,
we label an IP addresses as having a routing loop if it has an
increase factor of at least 4 and sent more than 10 packets
when probed with a TTL of 255. From our top 1 million
IP sample, we label 53,041 IP addresses as routing loop
amplifiers using this heuristic, spanning 2,763 distinct /24
prefixes. Figure 9 presents a CDF of the increase factor for
these routing loop IPs.

Loops per subnet One would expect that if sending to a
given IP address results in a routing loop, then all of the other
IP addresses in its /24 prefix would experience a loop, as well.
Surprisingly, we find that 62% of /24 prefixes with at least
one routing loop have exactly one loop. Figure 10 shows the
fraction of IP addresses found in each looping /24 prefix. Only
54 subnets have over 90% (231 of 256) of their IP addresses
show evidence of being a routing-loop amplifier. On the other
hand, 81.2% (2,244) of looping prefixes have fewer than 10
looping IP addresses. This means that even if an attacker can
elicit responses from a middlebox by sending packets to any
IP address that routes through it, she may only be able to take
advantage of routing loops to a small number of IP addresses.

6 “Mega-amplifiers”

In our scans, we identify a surprising number of hosts that
send enormous amounts of data in response to a single packet
sequence—on the order of many gigabytes. We believe these
are the same “mega-amplifiers” that Czyz et al. [9] reported
in 2014. We identify two phenomena that contribute to mega-
amplification: self-sustaining amplifiers and victim-sustained
amplifiers.

Self-Sustaining Amplifiers Self-sustaining amplifiers are
IP addresses that, once triggered, continue sending data in-
definitely. In our scans, we have observed these continuing
for weeks after our probes. We hypothesize the cause of self-
sustaining amplifiers is infinite routing loops: routing loops
between middleboxes that do not decrement TTLs.

An infinite routing loop suggests these amplifiers are send-
ing responses at the maximum capacity of their links. To
confirm, we sent a packet sequence to a self-sustaining ampli-
fier we identified in an ISP’s censorship system in Russia. A
short time later, we sent the same packet sequence from a dif-
ferent vantage point, and we recorded the bandwidth received
from each. Figure 11 shows the bandwidth we received on
both vantage points during our experiment. When we send a
probe from a second vantage point, the response bandwidth
was split equally between them.

We were unable to terminate the barrage of packets sent
to us by this amplifier. We sent RST packets, and also tried
FIN+ACK, FIN, RST+ACK, and ICMP port unreachable
messages with no effect. Ultimately, the traffic stopped after
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Figure 11: Attack bandwidth received at two vantage points
from a self-sustaining amplifying IP address, which (based
on its block page) appears to be a component of a Russian
ISP’s censorship system. The dashed line marks when the
packet sequence was sent from the second vantage point. Note
how the bandwidth we get from the system is divided evenly
between the vantage points. This experiment supports our
hypothesis that self-sustaining amplification is caused by an
infinite routing loop.

approximately six days to the first vantage point, and 22 hours
for the second. We believe the reason they finally stopped was
because the routing loop eventually dropped a packet.

Fortunately, we find very few self-sustaining amplifiers:
only 19 IP addresses sent data continuously. We identified 6 IP
addresses (each in a different /24 prefix) located in China that
sent the known censorship pattern from the GFW indefinitely,
possibly indicating a loop across the GFW itself. Two ISPs in
Russia also sent block pages indefinitely.

Victim-Sustained Attacks The TCP standard says that
when a host receives an unsolicited non-RST packet, it should
send a RST packet in response [28]. For TCP amplification vic-
tims, this means they will send RST packets for any received
(amplified) traffic. Normally, victim-generated RST packets
have no effect on middlebox amplifiers7.

However, our scans identify amplifying IP addresses that
send an additional response to RST packets instead of ignoring
them. This causes the victim to send another RST, inducing
more responses, and so on. This packet storm continues in-
definitely until a packet is dropped.

By default, our scanning machine sent outbound RST pack-
ets in response to data, thereby eliciting additional packets
from victim-sustained amplifiers. To explore the effect that
outbound RST packets have on amplification factor, we per-
form two additional scans: one with outbound RST pack-
ets turned off for the www.youporn.com keyword in the
〈SYN; PSH+ACK〉 sequence, and one with RSTs enabled (de-
fault). Figure 12 shows a comparison between these two scans.
Dropping outbound RST packets has the effect of lowering
the amplification factor for the top amplifying IP addresses,

7Conversely, they may serendipitously halt SYN-based amplification at-
tacks that target end-hosts [15, 16].
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Figure 12: Rank order plot of amplification factor of two
scans for the www.youporn.com keyword requested with the
〈SYN; PSH+ACK〉 packet sequence: one with outbound RST
and RST+ACK packets being dropped and the other normally.

while raising the amplification factor of many IP addresses in
the “long-tail”.

We find several thousand IP addresses that behave this way,
which we classify into two classes: censoring repeaters and
“acknowledgers”.

For censoring repeaters, we find 4,154 middleboxes that
re-send a block page in response to a RST. This appears to
be a buggy flow-tracking middlebox that, once a TCP flow
triggers blocking, will continue injecting its block page in
response to any subsequent packet, including RSTs.

For acknowledgers, we find 10,645 IPs that respond with
an ACK to both data payloads and subsequent RST packets.
This behavior is also not TCP compliant. To investigate what
operating systems these “acknowledgers” are, we performed
Operating System (OS) identification nmap [19] scans on 500
randomly sampled victim sustained IP addresses. Of the 452
(90.2%) IP addresses with a successful OS match, 267 (59%)
were Dell SonicWall NSA 220. We believe this firewall model
is to blame for most of the acknowledger victim-sustained
behavior: the next most common OS match was Linux 2.68,
with only 14 hosts (3%).

7 Ethical Considerations

Internet Scanning We followed best practices for scans as
outlined by ZMap and Quack [10,41]. We set up reverse DNS
and hosted a webpage on the IP address we performed scans
from, explaining the purpose of our scans. We also listed an
email address to receive complaints and allow people to opt
out of future scans. We received 8 removal requests over the
course of our study comprising 2.1 million IP addresses which
we removed from our scans.

Censorship-focused Internet-wide scans require additional
careful considerations to avoid causing harm or falsely impli-
cating users in making censored requests. In prior work on
active probing to trigger censorship, researchers used alterna-

8We note this is not standard Linux 2.6 behavior.

tive techniques to avoid having clients in censored countries
make requests for banned content [11, 25, 34, 41]. Similarly
in our work, the requests are made by our scanning machine
from outside the censored countries to all IPv4 addresses,
making it unlikely that a government would punish any indi-
vidual, due to the directionality and ubiquity of the scans. The
packet sequences we probe with are non-TCP compliant and
do not induce any in-country clients to make sensitive requests
in response. For these reasons, we believe wide-scale scans
of this nature pose minimal risk to individuals in censored
regions.

Saturation Experiments A natural question with all ampli-
fication studies is: at what point do amplifiers’ link saturate?
For example, a single host with amplification factor of 5,000×
may not be very valuable if it only has a 100kbps uplink.

Measuring the saturation of a specific amplifier requires
sending the triggering packet sequence in rapid succession
and measuring the response it triggers. For ethical reasons,
we do not perform such an experiment. These experiments
would effectively perform denial of service attacks against
the specific middlebox or the IP address, or could adversely
impact other networks on path.

We unintentionally triggered mega-amplifiers, and report
on our findings in this paper. However, after discovering these
IP addresses and the nature of their responses, we removed
them from future scans.

Responsible Disclosure Responsibly disclosing our find-
ings is challenging given the large number of potentially af-
fected vendors and network operators. It is both difficult to
fingerprint specific vendors or manufacturers of middleboxes,
and also difficult to identify the networks where middleboxes
are responding from, as they spoof their source IP address by
design.

Nonetheless, we attempted to reach out to both operators
and vendors of middleboxes we discovered in our study. We
contacted several country-level Computer Emergency Readi-
ness Teams (CERT) that coordinate disclosure for their re-
spective countries, including China, Egypt, India, Iran, Oman,
Qatar, Russia, Saudi Arabia, South Korea, the United Arab
Emirates, and the United States. We also reached out to sev-
eral middlebox vendors and manufacturers, including Check
Point, Cisco, F5, Fortinet, Juniper, Netscout, Palo Alto, Son-
icWall, and Sucuri.

We also publicly provide a repository of scripts that can
help manufacturers and network operators test their middle-
boxes for amplifying behavior.

8 Related Work

TCP Reflected Amplification Attacks In 2014, Kürher et
al. introduced a TCP handshake amplification attack [15, 16]
that takes advantage of a server retransmitting SYN+ACK pack-
ets multiple times in response to a single SYN. They find
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millions of hosts that will retransmit up to 20×, though most
send fewer than 6. We also observe this attack in our work,
but additionally discover hundreds of millions more IPs with
orders of magnitude higher amplification rates.

Non-reflective Amplification Attacks Other amplification
attacks abuse TCP but involve directly connecting to the vic-
tim. Sherwood et al. [36] showed an attacker can use opti-
mistic acknowledgments to induce a server to send a file at
higher rates, ultimately DoSing its own network. The Great
Cannon injects Javascript into Baidu webpages, turning vis-
iting browsers into denial of service bots [20]. Our attack is
effectively the reverse: instead of a censor co-opting the band-
width of users to perform an attack, an attacker can co-opt the
bandwidth of the censor.

UDP Reflected Amplification Attacks Reflected UDP at-
tacks have been studied extensively [1, 18, 32, 37]. However,
we are the first to study the use of middleboxes as reflectors.

Victim-sustained Attacks Sargent et al. [33] identified 79
hosts that respond to a particular IGMP request by repeating
the request. Ostensibly, source-spoofing this request could
cause an infinite loop between two such hosts, and is thus
similar to our victim-sustained attacks in §6. Our attacks are
more widely applicable, since they rely on standard client
behavior (sending RSTs to unsolicited packets); and as a re-
sult we identified several orders of magnitude more targets of
victim-sustained infinite amplification. However, their find-
ings motivate applying tools like Geneva at the application
layer to discover application-specific bugs.

9 Countermeasures

Unlike previous amplification attack vectors [9, 32, 37], our
attack is not isolated to a specific protocol and impacts a
wide range of implementations and devices. Unfortunately,
this means there is no single vendor or network that can be
patched to correct the problem. Instead, this issue is systemic
to middleboxes, particularly those that must operate seeing
only one side of a connection.

Nonetheless, we offer potential remedies that can eliminate
or partially mitigate amplification attacks, for both middle-
boxes and potential victims.

9.1 Middleboxes
Connection directionality While many middleboxes see
asymmetric sides of a connection (e.g., only traffic to the
server), there are others that see both sides, such as middle-
boxes deployed at the gateways of networks. These middle-
boxes can accurately infer if a connection is live and only
inject content if the three-way handshake is valid. We recom-
mend such middleboxes require seeing traffic in both direc-
tions (to client and to server), and only inject block pages if

this condition is met. This makes it more difficult for an at-
tacker to spoof a connection, as it is infeasible for them to get
both sides of a spoofed connection to pass by the same middle-
box to induce injection. However, this solution will not work
for large-scale middleboxes that sit in large transit networks
and more frequently see only one side of a connection.

Limit injected response sizes Some middleboxes inject
large block pages, directly enabling large amplification at-
tacks. An alternative approach is for these middleboxes to
only respond with a single RST to close a forbidden connec-
tion, or a with a minimal HTTP redirect to a different server
that hosts a block page. If the middlebox’s response size is
smaller than the minimum size required to trigger it, this en-
sures that the middlebox will not be a productive amplifier.

Egress filtering Though middleboxes are only supposed to
block websites for a limited group (such as a country or within
a corporate or school network), many operate “bidirection-
ally”, such that users outside the network accessing content
within can also trigger injected responses. For instance, users
outside China can still elicit the Great Firewall of China to
inject RST packets despite not being the intended target of
censorship. Instead, middleboxes should be configured to only
censor requests originating from within the intended network,
limiting the scope of victims of amplification.

Remove or limit censorship devices Many middleboxes
inject block pages into censored HTTP requests which use
an outdated protocol that has been far surpassed in traffic vol-
ume and page loads by HTTPS [38]. The utility that HTTP-
injecting devices provide is shrinking, and will ultimately
disappear as more sites use TLS. However, the damage they
inflict via amplification attacks will remain until these de-
vices are removed. Disabling HTTP injection in these devices
altogether would prevent abuse from attackers.

9.2 End Hosts

End hosts can take steps to mitigate the potential impact of
these attacks. Hosts that drop outbound RST packets are more
susceptible to TCP handshake-based attacks, but hosts that
do not are susceptible to sustaining a packet storm from a
victim-sustained amplifier. Instead, we recommend end hosts
be configured to drop outbound RST packets probabilistically;
this prevents an infinite packet storm, while still offering some
protection from handshake-based amplifiers.

10 Conclusion

We presented the first non-trivial TCP-based reflected ampli-
fication attacks. To discover them, we made use of a novel
genetic algorithm that we trained directly against censoring
middleboxes. We then scanned the Internet dozens of times
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and find over 200 million IPv4 addresses that provide am-
plification from 1× to over 700,000×, as well as others that
effectively yield infinite amplification.

Through a series of thorough follow-up experiments, we
found that these TCP amplifiers are predominantly middle-
boxes, and frequently nation-state censorship devices. It has
long been understood that nation-state censors restrict open
communication for those in their borders; our work shows
that they pose an even greater threat to the Internet as a whole,
as attackers can weaponize their powerful infrastructures to
attack anyone.

Our results show that middleboxes introduce an unexpected,
as-yet untapped threat that attackers could leverage to launch
powerful DoS attacks. Protecting the Internet from these
threats will require concerted effort from many middlebox
manufacturers and operators. To assist in these efforts, we
have made our code publicly available at:

https://geneva.cs.umd.edu/weaponizing
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