Your Censor is My Censor: Weaponizing Censorship Infrastructure for Availability Attacks

Kevin Bock Pranav Bharadwaj

Idwaj Jasraj Singh Dave Levin

UNIVERSITY OF MARYLAND

Web browser

Web browser

Web browser

kittens

Types of residual censorship Categorized by what information censor remembers

Types of residual censorship Categorized by what information censor remembers

4-tuple

3-tuple

2-tuple

Source Destination (IP, port, IP, port) (IP, IP, port) (IP, IP)

More aggressive

Censorship infrastructure

Censorship infrastructure

Censorship infrastructure can be weaponized

STOP

STOP

puppies

puppies

Attackers can restrict benign communication from crossing the censors' borders

36

How can we evaluate ethically?

Limitations of residual censorship?

How can we

Experiments in Iran, China, and Kazahkstan

Find differences in implementation and duration

Ethical experiments with SP³

Attacked ourselves from a dozen vantage points

Current state of residual censorship?

How can it be weaponized?

Experiments in Iran, China, and Kazahkstan

Find differences in implementation and duration

Current state of residual censorship?

How can it be weaponized?

State of residual censorship

Diversity of censors

Diversity of protocols

SNI ESNI DNS SMTP Other

Types of residual censorship 3-tuple or 4-tuple

Duration of residual censorship How long does blocking last?

Is residual censorship bidirectional? Does it affect traffic entering the country?

ESNI SMTP DNS Other

In all cases, censor tracks traffic direction

State of residual censorship

Residual censorship is implemented differently around the world

Bi-directional, but direction matters

- Different censorship mechanisms (RSTs vs Null Routing)
- Different types of censorship, even within countries

Experiments in Iran, India, China, and Kazahkstan

Find differences in implementation and duration

Ethical experiments with SP³

Attacked ourselves from a dozen vantage points

Current state of residual censorship?

How can it be weaponized?

Attacked ourselves from a dozen vantage points

Current state of residual censorship?

How can it be weaponized?

Ethical experiments with SP³

Weaponizing Middleboxes for **TCP Reflected Amplification** to appear in USENIX Security later this summer

Weaponizing Middleboxes for TCP Reflected Amplification to appear in USENIX Security later this summer

Packet sequences

SYN with Request

PSH

PSH+ACK

SYN; PSH

SYN; PSH+ACK

Weaponizing Middleboxes for TCP Reflected Amplification to appear in USENIX Security later this summer

Censorship can be triggered without a proper 3-way handshake

Packet sequences

SYN with Request

PSH

PSH+ACK

SYN; PSH

SYN; PSH+ACK

Weaponizing Middleboxes for TCP Reflected Amplification to appear in USENIX Security later this summer

Censorship can be triggered without a proper 3-way handshake

Packet sequences

SYN with Request

PSH

PSH+ACK

SYN; PSH

SYN; PSH+ACK

Only between hosts we control

Full control over packets we send

Ethical evaluation

- Attack ourselves ethically without affecting other hosts Need to spoof traffic to or from a censored regime

 - Solution: SP³

Consent to receive source-spoofed packets

Forbidden sequence

Innocuous request

Around the world

Innocuous request

Censored Regimes

"Attacker" (SP³)

"Victims" (Our clients)

Tested from 16 external vantage points

Tested from 16 external vantage points

		Destination Location							
Victim Location				Beijing 1	Beijing 2				
Australia	Sydney	HIIP HIIPS	HIIP HIIPS	HIIP ESNI	HIIP ESINI				
China	Beijing 1 Beijing 2								
India	Mumbai								
	Bangalore 1								
	Bangalore 2								
Iran	Tehran								
Ireland	Dublin 1								
	Dublin 2								
Japan	Tokyo								
Kazakhstan	Qaraghandy								
Russia	Khabarovsk								
UAE	Dubai 1								
	Dubai 2								
USA	Colorado								
	owa								
	Virginia								

Victim Location		Kazakhstan		Iran	Beijing 1		Beijing 2		
		HTTP	HTTPS	HTTP	HTTPS	HTTP	ESNI	HTTP	ESNI
Australia	Sydney				\checkmark	50%	10%	55%	\checkmark
China	Beijing 1	×	\checkmark		\checkmark	N/A	N/A	N/A	N/A
	Beijing 2	×			\checkmark	N/A	N/A	N/A	N/A
India	Mumbai	×	\checkmark		\checkmark	×	×		30%
	Bangalore 1				\checkmark	50%	10%		
	Bangalore 2		\checkmark		\checkmark	25%	10%		\checkmark
Iran	Tehran		\checkmark	N/A	N/A		50%	75%	\checkmark
Ireland	Dublin 1	×	\checkmark		\checkmark	×	×	×	5%
	Dublin 2	×	\checkmark			50%	\mathbf{X}	×	\mathbf{X}
Japan	Tokyo		\checkmark		\checkmark	25%	×	×	\checkmark
Kazakhstan	Qaraghandy	N/A	N/A		\checkmark	50%	×	20%	×
Russia	Khabarovsk		\checkmark		\checkmark		×		×
UAE	Dubai 1	×	\checkmark		\checkmark	85%	\mathbf{X}	95%	×
	Dubai 2	×			\checkmark	×	10%	×	50%
USA	Colorado		\checkmark		\checkmark	×	\mathbf{X}		×
	lowa	×				×		×	60%
	Virginia					85%		55%	$\mathbf{\mathbf{X}}$

Results

Destination Location

Source-spoofed traceroute from both to compare network path

Why does it fail?

Source-spoofed traceroute from both to compare network path

Why does it fail?

Why does it fail?

Source-spoofed traceroute from both to compare network path

Why does it fail?

......

Why does it fail?

Why does it fail?

Why does it fail?

Depends on type of residual censorship

Sustaining the attack Goal: block client IP to server IP:port

Attacker can't guess source port

4-tuple (IP, port, IP, port) 3-tuple (IP, IP, port)

Sustaining the attack Goal: block client IP to server IP:port

Attacker can re-trigger from all 65,535 src ports

Attacker can re-trigger from all 65,535 src ports

Trigger packets × 65,535

Duration

Speed
requiredTrigger packets× 65,535
× 65,535I45 bytes × 65,535
= 120 seconds= 634 kbps

Speed = Trigger packets required Duration

Weak attacker can launch this attack effectively

China

Sustaining the Attack Victim helps sustain the attack

 $(\bullet \bullet)$

 $(\bullet \bullet)$

Innocuous request

Residual timer resets if the victim sends data

Victim retransmissions unknowingly sustain the attack on themselves

Innocuous request

Can the server detect this?

Attacker can limit TTL of packets to reach censor, but not server

Can the server detect this?

Attacker can limit TTL of packets to reach censor, but not server

Attacker must have a vantage point:

(1) Without egress filtering

3

4) Censor can be triggered statelessly

Attack Limitations

- 2) Shares a similar enough path with their victim
 - Traffic crosses a censor (with residual censorship)

Surprisingly high number of shared network paths

What can be done?

Abolish 3-tuple residual censorship

Properly track 3-way handshake

- Some mitigations available to censorship infrastructure:

 - Null routing should track sequence numbers

Unfortunately, no good countermeasures available to victims

Other details in the paper

Reliability Experiments

Studied the reliability of residual censorship

ESNI Weaponization

Attack

Breadth

Examine which ports are affected

Details on how to weaponize ESNI in China

Analysis of other countries that might be affected

censorship.ai Code and website

Weaponizing Middleboxes

Censors can be weaponized to launch availability attacks

Can be done from a weak attacker

Censors pose a threat to the entire Internet